Protein corona – from molecular adsorption to physiological complexity
نویسندگان
چکیده
In biological environments, nanoparticles are enshrouded by a layer of biomolecules, predominantly proteins, mediating its subsequent interactions with cells. Detecting this protein corona, understanding its formation with regards to nanoparticle (NP) and protein properties, and elucidating its biological implications were central aims of bio-related nano-research throughout the past years. Here, we discuss the mechanistic parameters that are involved in the protein corona formation and the consequences of this corona formation for both, the particle, and the protein. We review consequences of corona formation for colloidal stability and discuss the role of functional groups and NP surface functionalities in shaping NP-protein interactions. We also elaborate the recent advances demonstrating the strong involvement of Coulomb-type interactions between NPs and charged patches on the protein surface. Moreover, we discuss novel aspects related to the complexity of the protein corona forming under physiological conditions in full serum. Specifically, we address the relation between particle size and corona composition and the latest findings that help to shed light on temporal evolution of the full serum corona for the first time. Finally, we discuss the most recent advances regarding the molecular-scale mechanistic role of the protein corona in cellular uptake of NPs.
منابع مشابه
The protein-nanoparticle interaction (protein corona) and its importance on the therapeutic application of nanoparticles
Nanobiotechnology has provided promising novel diagnostic and therapeutic strategies which capable to create a broad spectrum of nano-based imaging agents and medicines for human administrations. Several studies have demonstrated that the surface of nanomaterials is immediately coated with suspended proteins after contact with plasma or other biological fluids to form protein corona-nanoparticl...
متن کاملThe role of basic residues in the adsorption of blood proteins onto the graphene surface
With its many unique properties, graphene has shown great potential in various biomedical applications, while its biocompatibility has also attracted growing concerns. Previous studies have shown that the formation of protein-graphene corona could effectively reduce its cytotoxicity; however, the underlying molecular mechanism remains not well-understood. Herein, we use extensive molecular dyna...
متن کاملVariation of protein corona composition of gold nanoparticles following plasmonic heating.
It is well recognized that the primary interaction of most biological environments with nanoparticles (NPs) is strongly influenced by a long-lived ("hard") protein corona that surrounds the NP and remains strongly adsorbed to its surface. The amount and composition of associated proteins in the corona adsorbed onto the NPs is related to several important factors, including the physicochemical p...
متن کاملThe Role of the Protein Corona in Fiber Structure-Activity Relationships
When nanomaterials enter biological fluids, they are immediately covered by biomolecules, particularly proteins, forming the so-called protein corona. The dynamic nature and complexity of the protein corona can impact upon the biological effects and distribution of nanomaterials with an organism. Therefore, the protein corona is an important factor in determining the biological impact of any na...
متن کاملA proteomics-based methodology to investigate the protein corona effect for targeted drug delivery.
Here we introduce a proteomics methodology based on nanoliquid-chromatography tandem mass spectrometry (nanoLC/MS-MS) to investigate the "protein corona effect for targeted drug delivery", an innovative strategy, which exploits the "protein corona" that forms around nanoparticles in a physiological environment to target cells.
متن کامل